Categories
Uncategorized

Various 3D Printing Technologies

[fusion_builder_container hundred_percent=”no” hundred_percent_height=”no” hundred_percent_height_scroll=”no” hundred_percent_height_center_content=”yes” equal_height_columns=”no” menu_anchor=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” status=”published” publish_date=”” class=”” id=”” background_color=”” background_image=”” background_position=”center center” background_repeat=”no-repeat” fade=”no” background_parallax=”none” enable_mobile=”no” parallax_speed=”0.3″ video_mp4=”” video_webm=”” video_ogv=”” video_url=”” video_aspect_ratio=”16:9″ video_loop=”yes” video_mute=”yes” video_preview_image=”” border_color=”” border_style=”solid” margin_top=”” margin_bottom=”0px” padding_top=”” padding_right=”” padding_bottom=”” padding_left=”” type=”legacy”][fusion_builder_row][fusion_builder_column type=”1_1″ layout=”1_1″ spacing=”” center_content=”no” link=”” target=”_self” min_height=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=”” background_color=”” background_image=”” background_image_id=”” background_position=”left top” background_repeat=”no-repeat” hover_type=”none” border_color=”” border_style=”solid” border_position=”all” border_radius=”” box_shadow=”no” dimension_box_shadow=”” box_shadow_blur=”0″ box_shadow_spread=”0″ box_shadow_color=”” box_shadow_style=”” padding_top=”” padding_right=”” padding_bottom=”” padding_left=”” margin_top=”” margin_bottom=”” animation_type=”” animation_direction=”left” animation_speed=”0.3″ animation_offset=”” last=”true” border_sizes_top=”0″ border_sizes_bottom=”0″ border_sizes_left=”0″ border_sizes_right=”0″ first=”true”][fusion_text columns=”” column_min_width=”” column_spacing=”” rule_style=”default” rule_size=”” rule_color=”” content_alignment_medium=”” content_alignment_small=”” content_alignment=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” sticky_display=”normal,sticky” class=”” id=”” margin_top=”” margin_right=”” margin_bottom=”” margin_left=”” font_size=”” fusion_font_family_text_font=”” fusion_font_variant_text_font=”” line_height=”” letter_spacing=”” text_color=”” animation_type=”” animation_direction=”left” animation_speed=”0.3″ animation_offset=””]

3D Printing is also called as additive manufacturing. It is a process of creating a 3-dimensional object from a CAD model by adding successive layers of the material. There are several different technologies in 3D Printing. In fact, all the technologies similar as they construct an object layer by layer to create complex shapes.

[/fusion_text][/fusion_builder_column][/fusion_builder_row][/fusion_builder_container][fusion_builder_container admin_label=”Container FDM” hundred_percent=”no” hundred_percent_height=”no” hundred_percent_height_scroll=”no” hundred_percent_height_center_content=”yes” equal_height_columns=”no” menu_anchor=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” status=”published” publish_date=”” class=”” id=”” background_color=”” background_image=”” background_position=”center center” background_repeat=”no-repeat” fade=”no” background_parallax=”none” enable_mobile=”no” parallax_speed=”0.3″ video_mp4=”” video_webm=”” video_ogv=”” video_url=”” video_aspect_ratio=”16:9″ video_loop=”yes” video_mute=”yes” video_preview_image=”” border_color=”” border_style=”solid” margin_top=”0px” margin_bottom=”” padding_top=”20px” padding_right=”” padding_bottom=”20px” padding_left=”” type=”legacy”][fusion_builder_row][fusion_builder_column type=”1_1″ layout=”1_1″ spacing=”” center_content=”no” link=”” target=”_self” min_height=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=”” background_color=”” background_image=”” background_image_id=”” background_position=”left top” background_repeat=”no-repeat” hover_type=”none” border_color=”” border_style=”solid” border_position=”all” border_radius=”” box_shadow=”no” dimension_box_shadow=”” box_shadow_blur=”0″ box_shadow_spread=”0″ box_shadow_color=”” box_shadow_style=”” padding_top=”” padding_right=”” padding_bottom=”” padding_left=”” margin_top=”” margin_bottom=”” animation_type=”” animation_direction=”left” animation_speed=”0.3″ animation_offset=”” last=”true” border_sizes_top=”0″ border_sizes_bottom=”0″ border_sizes_left=”0″ border_sizes_right=”0″ first=”true”][fusion_text columns=”” column_min_width=”” column_spacing=”” rule_style=”default” rule_size=”” rule_color=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=””]

FUSED DEPOSITION MODELING

[/fusion_text][fusion_text columns=”” column_min_width=”” column_spacing=”” rule_style=”default” rule_size=”” rule_color=”” content_alignment_medium=”” content_alignment_small=”” content_alignment=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” sticky_display=”normal,sticky” class=”” id=”” margin_top=”” margin_right=”” margin_bottom=”” margin_left=”” font_size=”” fusion_font_family_text_font=”” fusion_font_variant_text_font=”” line_height=”” letter_spacing=”” text_color=”” animation_type=”” animation_direction=”left” animation_speed=”0.3″ animation_offset=””]

FDM is mostly used 3D Printing technology. FDM or Fused deposition modelling is a layer additive manufacturing process that uses production grade thermoplastic materials to produce both prototype and end-used parts. This technology is known to accurately produce feature details and has an excellent strength-to-weight ratio. FDM is used for concept models, functional prototypes manufacturing aids and low volume end used parts.

The FDM process begins by slicing 3D CAD data into layers, the data is then transferred to the machine which construct the part layer by layer on a build platform. Thin thread like spools and thermoplastic and support material are used to create each cross section of the part. Then the material is slowly extruded through dual heated nozzles precisely lay down both support and thermoplastic material upon the preceding layers, the extrusion nozzle continues to move in a horizontal XY plane while the build platform moves down then building the part layer by layer. The finished part removed from the build platform and cleaned of its support material.

[/fusion_text][fusion_text columns=”” column_min_width=”” column_spacing=”” rule_style=”default” rule_size=”” rule_color=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=”” animation_type=”” animation_direction=”left” animation_speed=”0.3″ animation_offset=””]

Materials: ABS, Flexible, Nylon, PET, Wood, PLA, PC, HIPS

[/fusion_text][fusion_imageframe image_id=”51629|full” max_width=”” style_type=”none” blur=”” stylecolor=”” hover_type=”none” bordersize=”” bordercolor=”” borderradius=”” align=”center” lightbox=”no” gallery_id=”” lightbox_image=”” lightbox_image_id=”” alt=”” link=”” linktarget=”_self” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=”” animation_type=”” animation_direction=”left” animation_speed=”0.3″ animation_offset=””]https://www.think3d.in/wp-content/uploads/2019/10/fdm-2.jpg[/fusion_imageframe][/fusion_builder_column][/fusion_builder_row][/fusion_builder_container][fusion_builder_container hundred_percent=”no” equal_height_columns=”no” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” background_position=”center center” background_repeat=”no-repeat” fade=”no” background_parallax=”none” enable_mobile=”no” parallax_speed=”0.3″ video_aspect_ratio=”16:9″ video_loop=”yes” video_mute=”yes” border_style=”solid” padding_top=”20px” padding_bottom=”20px” admin_label=”Container SLA” type=”legacy”][fusion_builder_row][fusion_builder_column type=”1_1″ layout=”1_1″ spacing=”” center_content=”no” link=”” target=”_self” min_height=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=”” background_color=”” background_image=”” background_image_id=”” background_position=”left top” background_repeat=”no-repeat” hover_type=”none” border_color=”” border_style=”solid” border_position=”all” border_radius=”” box_shadow=”no” dimension_box_shadow=”” box_shadow_blur=”0″ box_shadow_spread=”0″ box_shadow_color=”” box_shadow_style=”” padding_top=”” padding_right=”” padding_bottom=”” padding_left=”” margin_top=”” margin_bottom=”” animation_type=”” animation_direction=”left” animation_speed=”0.3″ animation_offset=”” last=”true” border_sizes_top=”0″ border_sizes_bottom=”0″ border_sizes_left=”0″ border_sizes_right=”0″ first=”true”][fusion_text]

STEREOLITHOGRAPHY

[/fusion_text][fusion_text columns=”” column_min_width=”” column_spacing=”” rule_style=”default” rule_size=”” rule_color=”” content_alignment_medium=”” content_alignment_small=”” content_alignment=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” sticky_display=”normal,sticky” class=”” id=”” margin_top=”” margin_right=”” margin_bottom=”” margin_left=”” font_size=”” fusion_font_family_text_font=”” fusion_font_variant_text_font=”” line_height=”” letter_spacing=”” text_color=”” animation_type=”” animation_direction=”left” animation_speed=”0.3″ animation_offset=””]

Stereolithography or SLA is a rapid prototyping process used to create parts from 3D CAD data in a matter of hours. SLA is a highly accurate additive manufacturing process and may also be referred to as prototyping or 3D Printing. Models created with this technology are typically used as concept models, for form and fit studies, or as master patterns for molding techniques. The SLA process begins when CAD data is sliced into thin cross-section or layers, typically about six thousands of an inch thick.

This data is then transferred to an SLA additive manufacturing system containing a vat of UV-curable photopolymer. The machine begins to build the part one layer at a time. Each layer is constructed from a ultraviolet laser that is directed by X and Y scanning mirrors. As the laser traces the cross-section on the surface of the resin, the liquid material is hardened on contact. Once a layer is complete, the build platform is indexed down to make room for the next layer. A recoater blade moves across the surface ensuring a thin coat of fresh liquid resin is evenly spread over the object. The laser continues to trace and form each layer a top the previous layer, building from the bottom up. The completed part is then carefully removed from the liquid and separated from the platform. A chemical bath removes excess resin and the part is cured in an ultraviolet oven. Any support structures are also removed at this time.

[/fusion_text][fusion_text columns=”” column_min_width=”” column_spacing=”” rule_style=”default” rule_size=”” rule_color=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=””]

Materials: Acura 25, Acura 60, Accura Xtreme, Accura Cast pro

[/fusion_text][fusion_imageframe image_id=”51630|full” max_width=”” style_type=”none” blur=”” stylecolor=”” hover_type=”none” bordersize=”” bordercolor=”” borderradius=”” align=”center” lightbox=”no” gallery_id=”” lightbox_image=”” lightbox_image_id=”” alt=”” link=”” linktarget=”_self” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=”” animation_type=”” animation_direction=”left” animation_speed=”0.3″ animation_offset=””]https://www.think3d.in/wp-content/uploads/2019/10/sla.jpg[/fusion_imageframe][/fusion_builder_column][/fusion_builder_row][/fusion_builder_container][fusion_builder_container hundred_percent=”no” hundred_percent_height=”no” hundred_percent_height_scroll=”no” hundred_percent_height_center_content=”yes” equal_height_columns=”no” menu_anchor=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” status=”published” publish_date=”” class=”” id=”” background_color=”” background_image=”” background_position=”center center” background_repeat=”no-repeat” fade=”no” background_parallax=”none” enable_mobile=”no” parallax_speed=”0.3″ video_mp4=”” video_webm=”” video_ogv=”” video_url=”” video_aspect_ratio=”16:9″ video_loop=”yes” video_mute=”yes” video_preview_image=”” border_color=”” border_style=”solid” margin_top=”” margin_bottom=”” padding_top=”” padding_right=”” padding_bottom=”” padding_left=”” admin_label=”Container sls” type=”legacy”][fusion_builder_row][fusion_builder_column type=”1_1″ layout=”1_1″ spacing=”” center_content=”no” link=”” target=”_self” min_height=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=”” background_color=”” background_image=”” background_image_id=”” background_position=”left top” background_repeat=”no-repeat” hover_type=”none” border_color=”” border_style=”solid” border_position=”all” border_radius=”” box_shadow=”no” dimension_box_shadow=”” box_shadow_blur=”0″ box_shadow_spread=”0″ box_shadow_color=”” box_shadow_style=”” padding_top=”” padding_right=”” padding_bottom=”” padding_left=”” margin_top=”” margin_bottom=”” animation_type=”” animation_direction=”left” animation_speed=”0.3″ animation_offset=”” last=”true” border_sizes_top=”0″ border_sizes_bottom=”0″ border_sizes_left=”0″ border_sizes_right=”0″ first=”true”][fusion_text]

SELECTIVE LASER SINTERING

[/fusion_text][fusion_text columns=”” column_min_width=”” column_spacing=”” rule_style=”default” rule_size=”” rule_color=”” content_alignment_medium=”” content_alignment_small=”” content_alignment=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” sticky_display=”normal,sticky” class=”” id=”” margin_top=”” margin_right=”” margin_bottom=”” margin_left=”” font_size=”” fusion_font_family_text_font=”” fusion_font_variant_text_font=”” line_height=”” letter_spacing=”” text_color=”” animation_type=”” animation_direction=”left” animation_speed=”0.3″ animation_offset=””]

Selective Laser Sintering or SLS is a rapid prototyping technology that turns 3D CAD data into physical parts. SLS is an additive technology that uses powdered Nylon 12. Parts produced are light-weight, highly durable, and both heat and chemical resistant, making SLS an excellent choice for producing production parts without the expense of tooling.

The SLS process begins by splitting 3D CAD data into thin cross-sections or layers. The data is then transferred to the SLS additive manufacturing equipment. The machine then begins to create the first layer. After a leveling roller spreads a thin layer of powdered material across the powder bed, a CO2 laser traces the cross-section on the material. As the laser scans the surface, material is heated and fused together. Once a single layer is complete, the powder bed is lowered to make room for the next layer. More material is introduced from the powder catridge and rolled out smooth, while unused material is recycled. The process is repeated, building layer upon layer until the part is complete.

As SLS parts are built, they are encompassed by unsintered powder which provides supplemental strength and eliminates the need for support structures. Complex designs and assemblies once thought and impossible are now being redesigned with SLS at cost effective integrated structures solid concepts and new factures parts utilizing nylon with property enhancing filters to create rugged SLS parts suitable for a variety of protoype and production applications.

[/fusion_text][fusion_text columns=”” column_min_width=”” column_spacing=”” rule_style=”default” rule_size=”” rule_color=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=””]

Materials: PA Nylon (for regular applications), Glass filled Nylon (for higher strength applications)

[/fusion_text][fusion_imageframe image_id=”51640|full” max_width=”” style_type=”none” blur=”” stylecolor=”” hover_type=”none” bordersize=”” bordercolor=”” borderradius=”” align=”center” lightbox=”no” gallery_id=”” lightbox_image=”” lightbox_image_id=”” alt=”” link=”” linktarget=”_self” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=”” animation_type=”” animation_direction=”left” animation_speed=”0.3″ animation_offset=””]https://www.think3d.in/wp-content/uploads/2019/10/sls.jpg[/fusion_imageframe][/fusion_builder_column][/fusion_builder_row][/fusion_builder_container][fusion_builder_container hundred_percent=”no” equal_height_columns=”no” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” background_position=”center center” background_repeat=”no-repeat” fade=”no” background_parallax=”none” enable_mobile=”no” parallax_speed=”0.3″ video_aspect_ratio=”16:9″ video_loop=”yes” video_mute=”yes” border_style=”solid” padding_top=”20px” padding_bottom=”20px” admin_label=”Container DMLS” type=”legacy”][fusion_builder_row][fusion_builder_column type=”1_1″ layout=”1_1″ spacing=”” center_content=”no” link=”” target=”_self” min_height=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=”” background_color=”” background_image=”” background_image_id=”” background_position=”left top” background_repeat=”no-repeat” hover_type=”none” border_color=”” border_style=”solid” border_position=”all” border_radius=”” box_shadow=”no” dimension_box_shadow=”” box_shadow_blur=”0″ box_shadow_spread=”0″ box_shadow_color=”” box_shadow_style=”” padding_top=”” padding_right=”” padding_bottom=”” padding_left=”” margin_top=”” margin_bottom=”” animation_type=”” animation_direction=”left” animation_speed=”0.3″ animation_offset=”” last=”true” border_sizes_top=”0″ border_sizes_bottom=”0″ border_sizes_left=”0″ border_sizes_right=”0″ first=”true”][fusion_text]

DIRECT METAL LASER SINTERING

[/fusion_text][fusion_text columns=”” column_min_width=”” column_spacing=”” rule_style=”default” rule_size=”” rule_color=”” content_alignment_medium=”” content_alignment_small=”” content_alignment=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” sticky_display=”normal,sticky” class=”” id=”” margin_top=”” margin_right=”” margin_bottom=”” margin_left=”” font_size=”” fusion_font_family_text_font=”” fusion_font_variant_text_font=”” line_height=”” letter_spacing=”” text_color=”” animation_type=”” animation_direction=”left” animation_speed=”0.3″ animation_offset=””]

Direct Metal Laser Sintering or DMLS is an additive manufacturing technology that create metal parts directly from 3D CAD data without the need of tooling. DMLS utilizes a variety of metal and alloy materials such as alluminium, maragining steel, cobalt chrome to create durable parts and prototypes. DMLS is an excellent choice for functional metal prototypes, high-temperature applications and end-use parts.

The DMLS process begins in the same fashion as other layer additive manufacturing technologies.  A program takes 3D CAD data and mathematically slices it into 2D cross-sections each of these sections will act as a blue print telling the DMLS machine exactly where to center the metal material, the data is then transferred to the DMLS equipment. A recoder assembly pushes powdered metal material from the powder supply to create a uniform layer over the base plant. A laser then draws a 2D cross-section on the surface of the build material heating and fusing thematerial. Once a single layer is complete the base plate is lowered just enough to make room for the next layer more material is raised from the catridge and recoated evently on the previously centred layer.

The DMLS machine continues to center layer upon layer building from the bottom up as the part is built suppor structures are added to give supplemental strength to find features and overhanging surfaces. The completed part is then removed from the base layer and treated with an age hardening heat process to further harden the part. Any support structures are also removed at this time.

[/fusion_text][fusion_text columns=”” column_min_width=”” column_spacing=”” rule_style=”default” rule_size=”” rule_color=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=””]

Materials: Maraging Steel MS1, Stainless Steel ss316, Cobalt Chrome cp1, Aluminium AlSi10Mg, Titanium ti64, Inconel (Nickel Alloy)

[/fusion_text][fusion_imageframe image_id=”19825″ max_width=”” style_type=”none” blur=”” stylecolor=”” hover_type=”none” bordersize=”” bordercolor=”” borderradius=”” align=”center” lightbox=”no” gallery_id=”” lightbox_image=”” lightbox_image_id=”” alt=”” link=”” linktarget=”_self” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=”” animation_type=”” animation_direction=”left” animation_speed=”0.3″ animation_offset=””]https://www.think3d.in/wp-content/uploads/2017/03/DMLS.jpg[/fusion_imageframe][/fusion_builder_column][/fusion_builder_row][/fusion_builder_container][fusion_builder_container hundred_percent=”no” hundred_percent_height=”no” hundred_percent_height_scroll=”no” hundred_percent_height_center_content=”yes” equal_height_columns=”no” menu_anchor=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” status=”published” publish_date=”” class=”” id=”” background_color=”” background_image=”” background_position=”center center” background_repeat=”no-repeat” fade=”no” background_parallax=”none” enable_mobile=”no” parallax_speed=”0.3″ video_mp4=”” video_webm=”” video_ogv=”” video_url=”” video_aspect_ratio=”16:9″ video_loop=”yes” video_mute=”yes” video_preview_image=”” border_color=”” border_style=”solid” margin_top=”” margin_bottom=”” padding_top=”” padding_right=”” padding_bottom=”” padding_left=”” type=”legacy”][fusion_builder_row][fusion_builder_column type=”1_1″ layout=”1_1″ spacing=”” center_content=”no” link=”” target=”_self” min_height=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=”” background_color=”” background_image=”” background_image_id=”” background_position=”left top” background_repeat=”no-repeat” hover_type=”none” border_color=”” border_style=”solid” border_position=”all” border_radius=”” box_shadow=”no” dimension_box_shadow=”” box_shadow_blur=”0″ box_shadow_spread=”0″ box_shadow_color=”” box_shadow_style=”” padding_top=”” padding_right=”” padding_bottom=”” padding_left=”” margin_top=”” margin_bottom=”” animation_type=”” animation_direction=”left” animation_speed=”0.3″ animation_offset=”” last=”true” border_sizes_top=”0″ border_sizes_bottom=”0″ border_sizes_left=”0″ border_sizes_right=”0″ first=”true”][fusion_text columns=”” column_min_width=”” column_spacing=”” rule_style=”default” rule_size=”” rule_color=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=””]

COLOR JET PRINTING

[/fusion_text][fusion_text columns=”” column_min_width=”” column_spacing=”” rule_style=”default” rule_size=”” rule_color=”” content_alignment_medium=”” content_alignment_small=”” content_alignment=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” sticky_display=”normal,sticky” class=”” id=”” margin_top=”” margin_right=”” margin_bottom=”” margin_left=”” font_size=”” fusion_font_family_text_font=”” fusion_font_variant_text_font=”” line_height=”” letter_spacing=”” text_color=”” animation_type=”” animation_direction=”left” animation_speed=”0.3″ animation_offset=””]

Color jetting or binder jetting 3d printing process can produce high-definition, full-color prototypes or early-stage concept models affordably. As models are 3D-printed directly in color, ColorJet allows you to analyze color variations at an early stage without having to spend the extra time and money for post-process painting.

The CJP process begins by splitting 3D CAD data into thin cross-sections or layers. The data is then transferred to the CJP additive manufacturing equipment.  A roller mechanism spreads an even layer of white powder, the core material, across the build platform. The print heads then selectively jet the binder onto the powder to bind the subsequent layer of core material. The liquid binder serves the dual task of fusing the layers and coloring the part in a multitude of shades. As is the case with other powder bed systems, once a layer is completed, the powder bed drops incrementally and a roller or blade smoothens the powder over the surface of the bed, prior to the next pass of the jet heads, with the binder for the subsequent layer to be formed and fused with the previous layer.

[/fusion_text][fusion_text columns=”” column_min_width=”” column_spacing=”” rule_style=”default” rule_size=”” rule_color=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=””]

Materials: Sandstone powder

[/fusion_text][fusion_imageframe image_id=”51642|full” max_width=”” style_type=”” blur=”” stylecolor=”” hover_type=”none” bordersize=”” bordercolor=”” borderradius=”” align=”center” lightbox=”no” gallery_id=”” lightbox_image=”” lightbox_image_id=”” alt=”” link=”” linktarget=”_self” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=”” animation_type=”” animation_direction=”left” animation_speed=”0.3″ animation_offset=””]https://www.think3d.in/wp-content/uploads/2019/10/cjp.jpg[/fusion_imageframe][fusion_text columns=”” column_min_width=”” column_spacing=”” rule_style=”default” rule_size=”” rule_color=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=””]

Source: CD3D

[/fusion_text][/fusion_builder_column][/fusion_builder_row][/fusion_builder_container][fusion_builder_container hundred_percent=”no” hundred_percent_height=”no” hundred_percent_height_scroll=”no” hundred_percent_height_center_content=”yes” equal_height_columns=”no” menu_anchor=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” status=”published” publish_date=”” class=”” id=”” background_color=”” background_image=”” background_position=”center center” background_repeat=”no-repeat” fade=”no” background_parallax=”none” enable_mobile=”no” parallax_speed=”0.3″ video_mp4=”” video_webm=”” video_ogv=”” video_url=”” video_aspect_ratio=”16:9″ video_loop=”yes” video_mute=”yes” video_preview_image=”” border_color=”” border_style=”solid” margin_top=”” margin_bottom=”” padding_top=”” padding_right=”” padding_bottom=”” padding_left=”” type=”legacy”][fusion_builder_row][fusion_builder_column type=”1_1″ layout=”1_1″ spacing=”” center_content=”no” link=”” target=”_self” min_height=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=”” background_color=”” background_image=”” background_image_id=”” background_position=”left top” background_repeat=”no-repeat” hover_type=”none” border_color=”” border_style=”solid” border_position=”all” border_radius=”” box_shadow=”no” dimension_box_shadow=”” box_shadow_blur=”0″ box_shadow_spread=”0″ box_shadow_color=”” box_shadow_style=”” padding_top=”” padding_right=”” padding_bottom=”” padding_left=”” margin_top=”” margin_bottom=”” animation_type=”” animation_direction=”left” animation_speed=”0.3″ animation_offset=”” last=”true” border_sizes_top=”0″ border_sizes_bottom=”0″ border_sizes_left=”0″ border_sizes_right=”0″ first=”true”][fusion_text columns=”” column_min_width=”” column_spacing=”” rule_style=”default” rule_size=”” rule_color=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=””]

MULTI JET FUSION

[/fusion_text][fusion_text columns=”” column_min_width=”” column_spacing=”” rule_style=”default” rule_size=”” rule_color=”” content_alignment_medium=”” content_alignment_small=”” content_alignment=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” sticky_display=”normal,sticky” class=”” id=”” margin_top=”” margin_right=”” margin_bottom=”” margin_left=”” font_size=”” fusion_font_family_text_font=”” fusion_font_variant_text_font=”” line_height=”” letter_spacing=”” text_color=”” animation_type=”” animation_direction=”left” animation_speed=”0.3″ animation_offset=””]

Multi Jet Fusion is a powder-based technology but does not use lasers. The powder bed is heated uniformly at the outset. A fusing agent is jetted where particles need to be selectively molten, and a detailing agent is jetted around the contours to improve part resolution. While lamps pass over the surface of the powder bed, the jetted material captures the heat and helps distribute it evenly.

Multi Jet Fusion’s unique build style includes fusing and detailing agents within a powder-bed fusion process. The build begins with a thin layer of powdered material being deposited across the build platform. Droplets of fusing, detailing and transforming agents are applied along with thermal energy on top of the powdered material to define the part’s geometry and properties.

The process continues layer-by-layer until a complete part is formed. After the print is finished, the build unit with the material and parts are rolled onto a processing station for cooling and powder excavation.

[/fusion_text][fusion_text columns=”” column_min_width=”” column_spacing=”” rule_style=”default” rule_size=”” rule_color=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=””]

Materials: Nylon (PA12)

[/fusion_text][fusion_imageframe image_id=”26300|full” max_width=”” style_type=”” blur=”” stylecolor=”” hover_type=”none” bordersize=”” bordercolor=”” borderradius=”” align=”center” lightbox=”no” gallery_id=”” lightbox_image=”” lightbox_image_id=”” alt=”” link=”” linktarget=”_self” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=”” animation_type=”” animation_direction=”left” animation_speed=”0.3″ animation_offset=””]https://www.think3d.in/wp-content/uploads/2019/02/mjf-technology.jpg[/fusion_imageframe][/fusion_builder_column][/fusion_builder_row][/fusion_builder_container][fusion_builder_container hundred_percent=”no” hundred_percent_height=”no” hundred_percent_height_scroll=”no” hundred_percent_height_center_content=”yes” equal_height_columns=”no” menu_anchor=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” status=”published” publish_date=”” class=”” id=”” background_color=”” background_image=”” background_position=”center center” background_repeat=”no-repeat” fade=”no” background_parallax=”none” enable_mobile=”no” parallax_speed=”0.3″ video_mp4=”” video_webm=”” video_ogv=”” video_url=”” video_aspect_ratio=”16:9″ video_loop=”yes” video_mute=”yes” video_preview_image=”” border_color=”” border_style=”solid” margin_top=”” margin_bottom=”” padding_top=”” padding_right=”” padding_bottom=”” padding_left=”” type=”legacy”][fusion_builder_row][fusion_builder_column type=”1_1″ layout=”1_1″ spacing=”” center_content=”no” link=”” target=”_self” min_height=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=”” background_color=”” background_image=”” background_image_id=”” background_position=”left top” background_repeat=”no-repeat” hover_type=”none” border_color=”” border_style=”solid” border_position=”all” border_radius=”” box_shadow=”no” dimension_box_shadow=”” box_shadow_blur=”0″ box_shadow_spread=”0″ box_shadow_color=”” box_shadow_style=”” padding_top=”” padding_right=”” padding_bottom=”” padding_left=”” margin_top=”” margin_bottom=”” animation_type=”” animation_direction=”left” animation_speed=”0.3″ animation_offset=”” last=”true” border_sizes_top=”0″ border_sizes_bottom=”0″ border_sizes_left=”0″ border_sizes_right=”0″ first=”true”][fusion_text columns=”” column_min_width=”” column_spacing=”” rule_style=”default” rule_size=”” rule_color=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=””]

POLY JET PRINTING

[/fusion_text][fusion_text columns=”” column_min_width=”” column_spacing=”” rule_style=”default” rule_size=”” rule_color=”” content_alignment_medium=”” content_alignment_small=”” content_alignment=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” sticky_display=”normal,sticky” class=”” id=”” margin_top=”” margin_right=”” margin_bottom=”” margin_left=”” font_size=”” fusion_font_family_text_font=”” fusion_font_variant_text_font=”” line_height=”” letter_spacing=”” text_color=”” animation_type=”” animation_direction=”left” animation_speed=”0.3″ animation_offset=””]

PolyJet is a layer additive manufacturing technology used to develop plastic prototypes from 3D CAD data. This rapid prototyping process uses ink-jet technology combined with UV curable materials to quickly and economically produce highly detailed and accurate physical prototypes. PolyJet is one of the fastest prototyping processes available to develop high-precision physical parts, and is ideal for smaller parts appearance models and master pattern.

The PolyJet process begins by slicing CAD data into cross-sections or layers as thin as sixteen-thousands of each. The data is then transferred to the polyjet machine which begins constructing the object one layer at a time from the bottom up. Similar to how an ink-jet printer lays down pigment, the PolyJet print head deposits small amounts of ultraviolet curable material on the build platform. Eventually forming a single cross-section of the part. An ultraviolet light attached to the print head simultaneously cures the material as it is printed. Once a cross section is complete, the build platform is lowered slightly to make room for the next layer. As the part is built, support material is added to give supplemental strength to fine structures and down-facing surfaces. After all of the layers have been created, the finished part is removed from the platform and cleaned.

[/fusion_text][fusion_text columns=”” column_min_width=”” column_spacing=”” rule_style=”default” rule_size=”” rule_color=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=””]

Materials: Photo polymer resin

[/fusion_text][fusion_imageframe image_id=”51646|full” max_width=”” style_type=”” blur=”” stylecolor=”” hover_type=”none” bordersize=”” bordercolor=”” borderradius=”” align=”center” lightbox=”no” gallery_id=”” lightbox_image=”” lightbox_image_id=”” alt=”” link=”” linktarget=”_self” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=”” animation_type=”” animation_direction=”left” animation_speed=”0.3″ animation_offset=””]https://www.think3d.in/wp-content/uploads/2019/10/pjp.jpg[/fusion_imageframe][fusion_text columns=”” column_min_width=”” column_spacing=”” rule_style=”default” rule_size=”” rule_color=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=””]

Source: 3Dnatives

[/fusion_text][/fusion_builder_column][/fusion_builder_row][/fusion_builder_container][fusion_builder_container hundred_percent=”no” hundred_percent_height=”no” hundred_percent_height_scroll=”no” hundred_percent_height_center_content=”yes” equal_height_columns=”no” menu_anchor=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” status=”published” publish_date=”” class=”” id=”” background_color=”” background_image=”” background_position=”center center” background_repeat=”no-repeat” fade=”no” background_parallax=”none” enable_mobile=”no” parallax_speed=”0.3″ video_mp4=”” video_webm=”” video_ogv=”” video_url=”” video_aspect_ratio=”16:9″ video_loop=”yes” video_mute=”yes” video_preview_image=”” border_color=”” border_style=”solid” margin_top=”” margin_bottom=”” padding_top=”” padding_right=”” padding_bottom=”” padding_left=”” type=”legacy”][fusion_builder_row][fusion_builder_column type=”1_1″ layout=”1_1″ spacing=”” center_content=”no” link=”” target=”_self” min_height=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=”” background_color=”” background_image=”” background_image_id=”” background_position=”left top” background_repeat=”no-repeat” hover_type=”none” border_color=”” border_style=”solid” border_position=”all” border_radius=”” box_shadow=”no” dimension_box_shadow=”” box_shadow_blur=”0″ box_shadow_spread=”0″ box_shadow_color=”” box_shadow_style=”” padding_top=”” padding_right=”” padding_bottom=”” padding_left=”” margin_top=”” margin_bottom=”” animation_type=”” animation_direction=”left” animation_speed=”0.3″ animation_offset=”” last=”true” border_sizes_top=”0″ border_sizes_bottom=”0″ border_sizes_left=”0″ border_sizes_right=”0″ first=”true”][fusion_text columns=”” column_min_width=”” column_spacing=”” rule_style=”default” rule_size=”” rule_color=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=””]

MULTI JET PRINTING

[/fusion_text][fusion_text columns=”” column_min_width=”” column_spacing=”” rule_style=”default” rule_size=”” rule_color=”” content_alignment_medium=”” content_alignment_small=”” content_alignment=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” sticky_display=”normal,sticky” class=”” id=”” margin_top=”” margin_right=”” margin_bottom=”” margin_left=”” font_size=”” fusion_font_family_text_font=”” fusion_font_variant_text_font=”” line_height=”” letter_spacing=”” text_color=”” animation_type=”” animation_direction=”left” animation_speed=”0.3″ animation_offset=””]

MJP is used to build parts, patterns and molds with fine feature detail to address a wide range of applications. These high-resolution printers are economical to own and operate and use a separate, meltable or dissolvable support material to make post-processing a breeze. Another big benefit is that removing support material is virtually a hands-free operation and allows even the most delicate features and complex internal cavities to be thoroughly cleaned without damage.

MJP printers offer the highest Z-direction resolution with layer thicknesses as low as 16 microns. In addition, selectable print modes allow the user to choose the best combination of resolution and print speed, so it’s easy to find a combination that meets your needs. Parts have smooth finish and can achieve accuracies rivaling SLA for many applications. Recent material advances have improved the durability of plastic materials and are now suitable for some end-use applications.

[/fusion_text][fusion_text columns=”” column_min_width=”” column_spacing=”” rule_style=”default” rule_size=”” rule_color=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=””]

Materials: 

  • ∗VisiJet® M2R-WT (Rigid White, General Purpose)
  • ∗VisiJet® M2R-BK  (Rigid Black, General Purpose)
  • VisiJet® M2G-DUR (VisiJet ProFlex, PP-like)
  • VisiJet® M2R-GRY  (Rigid Gray, High Contrast)
  • VisiJet® M2G-CL (VisiJet Armor, Clear, ABS-like)
  • VisiJet® M2R-CL (Rigid Clear, General Purpose)
  • VisiJet® M2-EBK (Elastomeric Black, High Flex)
  • VisiJet® M2-ENT (Elastomeric Natural, High Flex)

[/fusion_text][fusion_imageframe image_id=”51705|full” max_width=”” style_type=”” blur=”” stylecolor=”” hover_type=”none” bordersize=”” bordercolor=”” borderradius=”” align=”center” lightbox=”no” gallery_id=”” lightbox_image=”” lightbox_image_id=”” alt=”” link=”” linktarget=”_self” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=”” animation_type=”” animation_direction=”left” animation_speed=”0.3″ animation_offset=””]https://www.think3d.in/wp-content/uploads/2019/10/mjp.jpg[/fusion_imageframe][/fusion_builder_column][/fusion_builder_row][/fusion_builder_container][fusion_builder_container hundred_percent=”no” hundred_percent_height=”no” hundred_percent_height_scroll=”no” hundred_percent_height_center_content=”yes” equal_height_columns=”no” menu_anchor=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” status=”published” publish_date=”” class=”” id=”” background_color=”” background_image=”” background_position=”center center” background_repeat=”no-repeat” fade=”no” background_parallax=”none” enable_mobile=”no” parallax_speed=”0.3″ video_mp4=”” video_webm=”” video_ogv=”” video_url=”” video_aspect_ratio=”16:9″ video_loop=”yes” video_mute=”yes” video_preview_image=”” border_color=”” border_style=”solid” margin_top=”” margin_bottom=”” padding_top=”” padding_right=”” padding_bottom=”” padding_left=”” type=”legacy”][fusion_builder_row][fusion_builder_column type=”1_1″ layout=”1_1″ spacing=”” center_content=”no” link=”” target=”_self” min_height=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=”” background_color=”” background_image=”” background_image_id=”” background_position=”left top” background_repeat=”no-repeat” hover_type=”none” border_color=”” border_style=”solid” border_position=”all” border_radius=”” box_shadow=”no” dimension_box_shadow=”” box_shadow_blur=”0″ box_shadow_spread=”0″ box_shadow_color=”” box_shadow_style=”” padding_top=”” padding_right=”” padding_bottom=”” padding_left=”” margin_top=”” margin_bottom=”” animation_type=”” animation_direction=”left” animation_speed=”0.3″ animation_offset=”” last=”true” border_sizes_top=”0″ border_sizes_bottom=”0″ border_sizes_left=”0″ border_sizes_right=”0″ first=”true”][fusion_text columns=”” column_min_width=”” column_spacing=”” rule_style=”default” rule_size=”” rule_color=”” hide_on_mobile=”small-visibility,medium-visibility,large-visibility” class=”” id=””]

Click here to know more about 3D Printers, 3D Printing services and it’s applications.

[/fusion_text][/fusion_builder_column][/fusion_builder_row][/fusion_builder_container]

Rapid Prototyping Techniques – Comparison

Rapid prototyping is a fast and cost-effective method for creating prototypes for product development.

It helps for a multitude of uses like functional testing, tooling, moulds, visualization and as a proof of concept.  Please find below a brief comparison between different techniques in rapid prototyping used at think3D.

[table id=22 /]

 

 

Categories
Uncategorized

High Quality Rapid Prototyping Services in India

Rapid prototyping is a way to quickly fabricate and visualize a solid model of a part or assembly using 3D CAD data. In other words, it is a fast and more cost-effective method for creating prototypes for product development.

It helps for a multitude of uses like functional testing, tooling, moulds, visualization and as a proof of concept. Deeper uses of Rapid Prototyping include decreased development time, reduce costly mistakes, give an effective communication to the end user and allow multiple variants if the product.

[button size=medium style=round color=red align=left url=https://www.think3d.in/3d-printing-on-demand-place-order/ text=”Get Started Now!”][/button]

[button size=medium style=round color=black align=none url=https://www.think3d.in/contact-us-at-think3d/ text=”Contact Us!” target=”_blank”][/button]

Steps in Rapid Prototyping Methodology

  • CAD Model Preparation as per the required design
  • Creation of 3D print ready file, in the form of .STL file
  • Use of appropriate rapid prototyping/ 3D printing methodology
  • Model finishing and post processing

Rapid Prototyping Services for customers across India

Rapid Prototyping Division of think3D prides itself in its ability to provide multiple Rapid Prototyping methodologies providing material options, involving multiple techniques to give the best possible outcome to its clients looking for good quality rapid prototyping services in India at a reasonable price. Our clientele come from a wide spectrum of industries including engineering, automobile, healthcare, manufacturing, construction, ranging from large corporations to nimble startups and even individual hobbyinsts.

Depending on the application, timelines and finish requirements, we use the following rapid prototyping techniques to bring the part to life.

Check Rapid Prototyping Techniques – Comparison for more details.

[button size=medium style=round color=red align=left url=https://www.think3d.in/3d-printing-on-demand-place-order/ text=”Get Started Now!”][/button]

[button size=medium style=round color=black align=none url=https://www.think3d.in/contact-us-at-think3d/ text=”Contact Us!” target=”_blank”][/button]

Vacuum Casting

VaccuumVaccuum casting casting technique helps in getting a small quantity of plastic pieces with the quality of injection molded components. The method uses cast silicone molds made with the help of a master model created using stereolithography (SLA) typically. Silicone material is cast around the carefully developed master model, partially under vacuum in order to avoid air bubbles being trapped in between the master and silicone. The surface quality and the dimensional accuracy of the master is a determining factor for the quality of vacuum casted components. After curing, the mold is cut according to the parting planes and the master is removed, leaving a cavity to make copies.

Materials options provided by us:  ABS, Rubber, PP

Object Characteristics: Good Surface finish and strength for prototyping and enduse

Typical Applications:

[button size=medium style=round color=red align=left url=https://www.think3d.in/3d-printing-on-demand-place-order/ text=”Get Started Now!”][/button]

[button size=medium style=round color=black align=none url=https://www.think3d.in/contact-us-at-think3d/ text=”Contact Us!” target=”_blank”][/button]


Fused Deposition Modeling (FDM)

The Fused Deposition Modeling (FDM) process creates Fused Deposition Modeling technique in Rapid Prototypingthree-dimensional solid objects directly from 3D CAD model data. The FDM process starts with importing an STL file of a model into a pre-processing software. The slicing software generates a gcode comprising machine level instructions that are fed to a 3D printer. The temperature-controlled extrusion head, which moves as per the gcode instructions, is fed with thermoplastic modeling material that is heated to a semi-liquid state. The head extrudes and directs the material with precision in ultrathin layers onto a fixtureless base. The result of the solidified material laminating to the preceding layer is a plastic 3D model built up one strand at a time. Once the part is completed, the support columns are removed and the surface is finished. Depending on the requirement, post processing is possible for required finish.

Materials options provided by us:  PLA, ABS, Nylon, Wood, HIPS, PMMA

Object Characteristics: FDM parts will be the cheapest to be created and typically have good strength, and a range of engineering thermo plastics are available in this technique. The drawback include less speed, surface finish, slightly lesser accuracy compared to other 3D printing techniques. Postprocessing with Acetone/ Putty is applicable for achieving smoother watertight finish and . Painting is an option for monocolour structures

Typical Applications:

 

[button size=medium style=round color=red align=left url=https://www.think3d.in/3d-printing-on-demand-place-order/ text=”Get Started Now!”][/button]

[button size=medium style=round color=black align=none url=https://www.think3d.in/contact-us-at-think3d/ text=”Contact Us!” target=”_blank”][/button]


Laser Sintering (SLS/ SLM)

Rapid prototyping technique 3D Printing Laser SinteringLaser sintering and laser melting are interchangeable terms that refer to a laser based 3D printing process that works with powdered materials. In the Selective Laser Sintering  technique, successive powder layers are spread on top of each other, on which, a CO2 laser beam which is computer-controlled as per the Cad data, scans the surface and selectively binds together the powder particles of the corresponding cross section of the product in a process called sintering. The layered material consists of powder with particle sizes in the order of magnitude of 50 µm. Laser sintering can process plastic and metal materials, although metal sintering does require a much higher powered laser and higher in -process temperatures.

Materials options provided by us: PA Nylon (white), Stanless Steel, aluminium

Object Characteristics: In this process is that the powder bed serves as an in-process support structure for overhangs and undercuts, and therefore complex shapes that could not be manufactured in any other way are possible with this process. Parts produced with this process are much stronger than with SL or DLP, although generally the surface finish and accuracy is not as good. SLS parts have much higher better accuracy than FDM

Typical Applications:

[button size=medium style=round color=red align=left url=https://www.think3d.in/3d-printing-on-demand-place-order/ text=”Get Started Now!”][/button]

[button size=medium style=round color=black align=none url=https://www.think3d.in/contact-us-at-think3d/ text=”Contact Us!” target=”_blank”][/button]


Stereolithography

Rapid Prototyping Technique - 3DPrinting StereolithographyStereolithography is the first and now one of the most widely used rapid prototyping techniques for prototyping. In a SLA process, a thin layer of photopolymer (usually between 0.05-0.15 mm) is exposed above the perforated platform. The UV laser hits the perforated platform, “painting” the pattern of the object being printed. The UV-curable liquid hardens instantly when the UV laser touches it, forming the first layer of the 3D-printed object. Once the initial layer of the object has hardened, the platform is lowered, exposing a new surface layer of liquid polymer. The laser again traces a cross section of the object being printed, which instantly bonds to the hardened section beneath it. This process is repeated again and again until the entire object has been formed and is fully submerged in the tank. The platform is then raised to expose a three-dimensional object. After it is rinsed with a liquid solvent to free it of excess resin, the object is baked in an ultraviolet oven to further cure the plastic.

Materials options provided by us: Clear Resin, white Resin, Castable Resin, tough Resin, Flexible Resin

Object Characteristics: Stereolithography is generally accepted as being one of the most accurate 3D printing processes with excellent surface finish. However limiting factors include the post -processing steps required and the stability of the materials over time, which can become more brittle.

Typical Applications:

[button size=medium style=round color=red align=left url=https://www.think3d.in/3d-printing-on-demand-place-order/ text=”Get Started Now!”][/button]

[button size=medium style=round color=black align=none url=https://www.think3d.in/contact-us-at-think3d/ text=”Contact Us!” target=”_blank”][/button]


Digital Light Processing (DLP)

Digital Light Processing - DLP
Digital Light Processing – DLP Rapid Prototyping Technique

It is a similar process to stereolithography in that it is a 3D printing process that works with photopolymers. The major difference is the light source. DLP uses a more conventional light source, such as an arc lamp with a liquid crystal display panel, which is applied to the entire surface of the vat of photopolymer resin in a single pass, generally making it faster than SL.

Also like SL, DLP produces highly accurate parts with excellent resolution, but its similarities also include the same requirements for support structures and post-curing. However, one advantage of DLP over SL is that only a shallow vat of resin is required to facilitate the process, which generally results in less waste and lower running costs.

Materials options provided by us: Clear Resin, Castable Resin, tough Resin

Object Characteristics: Same as SLA

[button size=medium style=round color=red align=left url=https://www.think3d.in/3d-printing-on-demand-place-order/ text=”Get Started Now!”][/button]

[button size=medium style=round color=black align=none url=https://www.think3d.in/contact-us-at-think3d/ text=”Contact Us!” target=”_blank”][/button]


3D Printing (Binder-jetting or color jet printing)

Rapid Prototyping Technique - 3D Printing Binder Jetting3D printing or colour jet printing uses standard inkjet printing technology with additional dimension. Here, the 3D printer moves a print head to spray inkjets over a bed of powder, instead of feeding paper (as in a typical 2D Printer)

In this technique, parts are created layer by layer by depositing a liquid binder onto thin layers of powder which spread uniformly on a build platform using roller mechanism that is fed with powder from a feed piston. The inkjet print heads then move on to the powder layer, and start printing the cross-sectional area as per the design data, binding the powder together. A piston then lowers the build platform by 0.1 mm, and a new layer of powder is spread on top. The print heads apply the data for the next cross section onto the new layer, which binds itself to the previous layer. This 3D Printing process is repeated for all of the layers until the physical model is created.

Materials options provided by us: PA Nylon (white)

Object Characteristics: Same as SLA

Typical Applications:

[button size=medium style=round color=red align=left url=https://www.think3d.in/3d-printing-on-demand-place-order/ text=”Get Started Now!”][/button]

[button size=medium style=round color=black align=none url=https://www.think3d.in/contact-us-at-think3d/ text=”Contact Us!” target=”_blank”][/button]


Inkjet: Material Jetting

Rapid Prototyping Technique - 3D Printing Material JettingIn this 3D printing process, in contrast with binder jetting, the actual build materials (in liquid or molten state) are electively jetted through multiple jet heads (with others simultaneously jetting support materials). However, the materials tend to be liquid photopolymers, which are cured with a pass of UV light as each layer is deposited.

Object Characteristics: The nature of this product allows for the simultaneous deposition of a range of materials, which means that a single part can be produced from multiple materials with different characteristics and properties. Material jetting is a very precise 3D printing method , producing accurate parts with a very smooth finish.

[button size=medium style=round color=red align=left url=https://www.think3d.in/3d-printing-on-demand-place-order/ text=”Get Started Now!”][/button]

[button size=medium style=round color=black align=none url=https://www.think3d.in/contact-us-at-think3d/ text=”Contact Us!” target=”_blank”][/button]


For more Details/ Estimate, fill in your details

[contact-form-7 id=”155″ title=”Contact Us”]

3D printing FAQ

[qa]